Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Animals (Basel) ; 14(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396498

RESUMEN

Bovine neosporosis is among the main causes of abortion in cattle worldwide, causing serious economic losses in the beef and dairy industries. A highly sensitive and specific diagnostic method for the assessment of the epidemiology of the disease, as well as it surveillance and management, is imperative, due to the absence of an effective treatment or vaccine against neosporosis. In the present study, the immunodiagnostic performance of Neospora caninum peroxiredoxin 2 (NcPrx2), microneme 4 (NcMIC4), and surface antigen 1 (NcSAG1) to detect IgG antibodies against N. caninum in cattle were evaluated and compared with that of the indirect fluorescent antibody test (IFAT). The results revealed that NcSAG1 had the highest sensitivity and specificity, with values of 88.4% and 80.7%, respectively, followed by NcPrx2, with a high sensitivity of 87.0% but a low specificity of 67.0%, whereas NcMIC4 showed sensitivity and specificity of 84.1% and 78.9%, respectively, when compared with IFAT. A high degree of agreement was observed for NcSAG1 (k = 0.713) recombinant protein, showing the highest diagnostic capability, followed by NcMIC4 (k = 0.64) and NcPrx2 (k = 0.558). The present study demonstrates that NcSAG1 is helpful as an antigen marker and also demonstrates the potential immunodiagnostic capabilities of NcPrx2 and NcMIC4, which could serve as alternative diagnostic markers for detecting N. caninum infection in cattle. These markers may find utility in future treatment management, surveillance, and risk assessment of neosporosis in livestock or other animal host species. Further research should be directed toward understanding the in vivo immune response differences resulting from immunization with both recombinant proteins.

2.
Sci Rep ; 14(1): 4830, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38413745

RESUMEN

The microsporidian Enterocytozoon hepatopenaei (EHP) is a major threat to shrimp health worldwide. Severe EHP infections in shrimp cause growth retardation and increase susceptibility to opportunistic infections. EHP produces spores with a chitin wall that enables them to survive prolonged environmental exposure. Previous studies showed that polar tube extrusion is a prerequisite for EHP infection, such that inhibiting extrusion should prevent infection. Using a proteomic approach, polar tube protein 2 of EHP (EhPTP2) was found abundantly in protein extracts obtained from extruded spores. Using an immunofluorescent antibody against EhPTP2 for immunohistochemistry, extruded spores were found in the shrimp hepatopancreas (HP) and intestine, but not in the stomach. We hypothesized that presence of EhPTP2 might be required for successful EHP spore extrusion. To test this hypothesis, we injected EhPTP2-specific double-stranded RNA (dsRNA) and found that it significantly diminished EHP copy numbers in infected shrimp. This indicated reduced amplification of EHP-infected cells in the HP by spores released from previously infected cells. In addition, injection of the dsRNA into EHP-infected shrimp prior to their use in cohabitation with naïve shrimp significantly (p < 0.05) reduced the rate of EHP transmission to naïve shrimp. The results revealed that EhPTP2 plays a crucial role in the life cycle of EHP and that dsRNA targeting EHP mRNA can effectively reach the parasite developing in host cells. This approach is a model for future investigations to identify critical genes for EHP survival and spread as potential targets for preventative and therapeutic measures in shrimp.


Asunto(s)
Enterocytozoon , Microsporidios , Parásitos , Penaeidae , Animales , Reacción en Cadena de la Polimerasa/métodos , Proteómica , ARN Bicatenario , Penaeidae/parasitología
3.
PLoS Negl Trop Dis ; 18(2): e0011966, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38381759

RESUMEN

Schistosomiasis is one of the most devastating human diseases worldwide. The disease is caused by six species of Schistosoma blood fluke; five of which cause intestinal granulomatous inflammation and bleeding. The current diagnostic method is inaccurate and delayed, hence, biomarker identification using metabolomics has been applied. However, previous studies only investigated infection caused by one Schistosoma spp., leaving a gap in the use of biomarkers for other species. No study focused on understanding the progression of intestinal disease. Therefore, we aimed to identify early gut biomarkers of infection with three Schistosoma spp. and progression of intestinal pathology. We infected 3 groups of mice, 3 mice each, with Schistosoma mansoni, Schistosoma japonicum or Schistosoma mekongi and collected their feces before and 1, 2, 4 and 8 weeks after infection. Metabolites in feces were extracted and identified using mass spectrometer-based metabolomics. Metabolites were annotated and analyzed with XCMS bioinformatics tool and Metaboanalyst platform. From >36,000 features in all conditions, multivariate analysis found a distinct pattern at each time point for all species. Pathway analysis reported alteration of several lipid metabolism pathways as infection progressed. Disturbance of the glycosaminoglycan degradation pathway was found with the presence of parasite eggs, indicating involvement of this pathway in disease progression. Biomarkers were discovered using a combination of variable importance for projection score cut-off and receiver operating characteristic curve analysis. Five molecules met our criteria and were present in all three species: 25-hydroxyvitamin D2, 1α-hydroxy-2ß-(3-hydroxypropoxy) vitamin D3, Ganoderic acid Md, unidentified feature with m/z 455.3483, and unidentified feature with m/z 456.3516. These molecules were proposed as trans-genus biomarkers of early schistosomiasis. Our findings provide evidence for disease progression in intestinal schistosomiasis and potential biomarkers, which could be beneficial for early detection of this disease.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis mansoni , Esquistosomiasis , Ratones , Humanos , Animales , Esquistosomiasis mansoni/diagnóstico , Esquistosomiasis/diagnóstico , Esquistosomiasis/parasitología , Biomarcadores , Diagnóstico Precoz , Progresión de la Enfermedad
4.
Parasit Vectors ; 17(1): 80, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383404

RESUMEN

BACKGROUND: Opisthorchis viverrini infection is traditionally diagnosed using the Kato-Katz method and formalin ethyl-acetate concentration technique. However, the limited sensitivity and specificity of these techniques have prompted the exploration of various molecular approaches, such as conventional polymerase chain reaction (PCR) and real-time PCR, to detect O. viverrini infection. Recently, a novel technique known as recombinase polymerase amplification (RPA)-clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) (RPA-CRISPR/Cas) assay was developed as a point-of-care tool for the detection of various pathogens, including viruses and bacteria such as severe acute respiratory syndrome coronavirus 2 and Mycobacterium tuberculosis. This technology has demonstrated high sensitivity and specificity. Therefore, we developed and used the RPA-CRISPR/Cas assay to detect O. viverrini infection in field-collected human feces. METHODS: To detect O. viverrini infection in fecal samples, we developed a CRISPR/Cas12a (RNA-guided endonuclease) system combined with RPA (Ov-RPA-CRISPR/Cas12a). Several fecal samples, both helminth-positive and helminth-negative, were used for the development and optimization of amplification conditions, CRISPR/Cas detection conditions, detection limits, and specificity of the RPA-CRISPR/Cas12a assay for detecting O. viverrini infection. The detection results were determined using a real-time PCR system based on fluorescence values. Additionally, as the reporter was labeled with fluorescein, the detection results were visually inspected using an ultraviolet (UV) transilluminator. A receiver operating characteristic curve (ROC) was used to determine the optimal cutoff value for fluorescence detection. The diagnostic performance, including sensitivity and specificity, of the Ov-RPA-CRISPR/Cas12a assay was evaluated on the basis of comparison with standard methods. RESULTS: The Ov-RPA-CRISPR/Cas12a assay exhibited high specificity for detecting O. viverrini DNA. On the basis of the detection limit, the assay could detect O. viverrini DNA at concentrations as low as 10-1 ng using the real-time PCR system. However, in this method, visual inspection under UV light required a minimum concentration of 1 ng. To validate the Ov-RPA-CRISPR/Cas12a assay, 121 field-collected fecal samples were analyzed. Microscopic examination revealed that 29 samples were positive for O. viverrini-like eggs. Of these, 18 were confirmed as true positives on the basis of the Ov-RPA-CRISPR/Cas12a assay and microscopic examination, whereas 11 samples were determined as positive solely via microscopic examination, indicating the possibility of other minute intestinal fluke infections. CONCLUSIONS: The Ov-RPA-CRISPR/Cas12a assay developed in this study can successfully detect O. viverrini infection in field-collected feces. Due to the high specificity of the assay reported in this study, it can be used as an alternative approach to confirm O. viverrini infection, marking an initial step in the development of point-of-care diagnosis.


Asunto(s)
Opistorquiasis , Opisthorchis , Animales , Humanos , Opisthorchis/genética , Sistemas CRISPR-Cas , Recombinasas/genética , Sensibilidad y Especificidad , Reacción en Cadena en Tiempo Real de la Polimerasa , Heces , ADN
5.
Heliyon ; 10(2): e24444, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38293411

RESUMEN

The polysaccharides found in Caulerpa lentillifera (sea grape algae) are potentially an important bioactive resource. This study makes use of RSM (response surface methodology) to determine the optimal conditions for the extraction of valuable SGP (sea grape polysaccharides). The findings indicated that a water/raw material ratio of 10:1 mL/g, temperature of 90 °C, and extraction time of 45 min would maximize the yield, with experimentation achieving a yield of 21.576 %. After undergoing purification through DEAE-52 cellulose and Sephacryl S-100 column chromatography, three distinct fractions were obtained, namely SGP11, SGP21, and SGP31, each possessing average molecular weights of 38.24 kDa, 30.13 kDa, and 30.65 kDa, respectively. Following characterization, the fractions were shown to comprise glucose, galacturonic acid, xylose, and mannose, while the sulfate content was in the range of 12.2-21.8 %. Using Fourier transform infrared spectroscopy (FT-IR) it was possible to confirm with absolute certainty the sulfate polysaccharide attributes of SGP11, SGP21, and SGP31. NMR (nuclear magnetic resonance) findings made it clear that SGP11 exhibited α-glycosidic configurations, while the configurations of SGP21 and SGP31 were instead ß-glycosidic. The in vitro antioxidant assays which were conducted revealed that each of the fractions was able to demonstrate detectable scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cations. All fractions were also found to exhibit the capacity to scavenge NO radicals in a dose-dependent manner. SGP11, SGP21, and SGP31 were also able to display cellular antioxidant activity (CAA) against the human adenocarcinoma colon (Caco-2) cell line when oxidative damage was induced. The concentration levels were found to govern the extent of such activity. Moreover, purified SGP were found to exert strong inhibitory effects upon glycation, with the responses dependent upon dosage, thus confirming the potential for SGP to find a role as a natural resource for the production of polysaccharide-based antioxidant drugs, or products to promote improved health.

6.
Sci Rep ; 14(1): 2347, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38281987

RESUMEN

Schistosoma mekongi, a significant schistosome parasite, has various life stages, including egg, cercaria, female, and male, that play crucial roles in the complex life cycle. This study aimed to explore the microRNA (miRNA) profiles across these developmental stages to understand their potential functions and evolutionary significance, which have not been studied. Pre-processed sequencing reads of small RNA (sRNA) were obtained, and annotations were performed against the S. japonicum reference miRNA database. Results indicated marked variations in miRNA profiles across different life stages, with notable similarities observed between female and male S. mekongi. Principal Coordinate Analysis (PCoA) and unsupervised clustering revealed distinct miRNA signatures for each stage. Gene ontology (GO) analysis unveiled the potential roles of these miRNAs in various biological processes. The differential expression of specific miRNAs was prominent across stages, suggesting their involvement in crucial developmental processes. Furthermore, orthologous miRNA analysis against various worm species revealed distinct presence-absence patterns, providing insights into the evolutionary relationships of these miRNAs. In conclusion, this comprehensive investigation into the miRNA profiles of S. mekongi offers valuable insights into the functional and evolutionary aspects of miRNAs in schistosome biology.


Asunto(s)
MicroARNs , Schistosoma japonicum , Animales , Masculino , Femenino , Schistosoma japonicum/genética , MicroARNs/genética , Estadios del Ciclo de Vida/genética , ARN de Helminto/genética
7.
Sci Rep ; 13(1): 22840, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129499

RESUMEN

Parasitic roundworms cause significant sickness and mortality in animals and humans. In livestock, these nematodes have severe economic impact and result in losses in food production on a global scale. None of the currently available drugs ideally suit all treatment circumstances, and the development of drug-resistant nematode strains has become a challenge to control the infection. There is an urgent need to develop novel anthelmintic compounds. According to our previous report, N-methylbenzo[d]oxazol-2-amine (1) showed anthelmintic activity and lowest cytotoxicity. In this study, in vivo anthelmintic properties were evaluated using Trichinella spiralis infected mice. Toxicity was evaluated using the rats and mode of action using molecular docking and metabolomics approaches. The in vivo results demonstrate that a dose of 250 mg/kg reduced the T. spiralis abundance in the digestive tract by 49%. The 250 mg/kg Albendazole was served as control. The relatively low acute toxicity was categorized into chemical category 5, with an LD50 greater than 2000 mg/kg body. Molecular docking analysis showed the T. spiralis tubulin beta chain and glutamate-gated channels might not be the main targets of compound 1. Metabolomics analysis was used to explain the effects of compound 1 on the T. spiralis adult worm. The results demonstrated that compound 1 significantly up-regulated the metabolism of purine, pyrimidine and down-regulated sphingolipid metabolism. In conclusion, compound 1 could be a potential molecule for anthelmintic development. The bioavailability, pharmacokinetics, and absorption of this compound should be studied further to provide information for its future efficacy improvement.


Asunto(s)
Antihelmínticos , Nematodos , Trichinella spiralis , Humanos , Ratones , Ratas , Animales , Simulación del Acoplamiento Molecular , Antihelmínticos/uso terapéutico , Albendazol/uso terapéutico
8.
Vet World ; 16(11): 2366-2373, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38152266

RESUMEN

Background and Aims: Asthma, a chronic disease affecting humans and animals, has recently become increasingly prevalent and steadily widespread. The alternative treatment of asthma using helminth infections or helminth-derived immunomodulatory molecules (IMs) has been evaluated and demonstrated significant amelioration of disease severity index in vitro and in vivo. Trichinella spiralis, a parasitic nematode and its IMs, elicits a potential to relieve asthma and other immune-related disorders. In this study, we investigated the immunomodulatory function of recombinant T. spiralis novel cystatin (rTsCstN) in ameliorating acute inflammatory asthma disorders in a murine model. Materials and Methods: Female BALB/c mice were sensitized using intraperitoneal injection of ovalbumin (OVA)/alum and subsequently challenged with intranasal administration of OVA alone or OVA + rTsCstN for 3 consecutive days, producing OVA-induced allergic asthma models. To evaluate the therapeutic efficacy of rTsCstN, the inflammatory cells and cytokines in bronchoalveolar lavage fluid (BALF) and OVA-specific immunoglobulin E levels in serum were assessed. Histological alterations in the lung tissues were determined by hematoxylin and eosin (H&E) staining and eventually scored for the extent of inflammatory cell infiltration. Results: The asthmatic mouse models challenged with OVA + rTsCstN demonstrated a significant reduction of eosinophils (p < 0.01), macrophages (p < 0.05), and cytokines tumor necrosis factor-α (p < 0.05) and interferon (IFN)-γ (p < 0.05) in BALF when compared with the mice challenged with OVA alone. However, the levels of interleukin (IL)-4 and IL-10 remained unchanged. Histological examination revealed that mice administered OVA + rTsCstN were less likely to have inflammatory cell infiltration in their perivascular and peribronchial lung tissues than those administered OVA alone. Conclusion: Recombinant T. spiralis novel cystatin demonstrated immunomodulatory effects to reduce severe pathogenic alterations in asthma mouse models, encouraging a viable alternative treatment for asthma and other immunoregulatory disorders in humans and animals in the future.

9.
Front Cell Infect Microbiol ; 13: 1306567, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38145042

RESUMEN

Human trichinellosis is a parasitic infection caused by roundworms belonging to the genus Trichinella, especially Trichinella spiralis. Early and accurate clinical diagnoses of trichinellosis are required for efficacious prognosis and treatment. Current drug therapies are limited by antiparasitic resistance, poor absorption, and an inability to kill the encapsulating muscle-stage larvae. Therefore, reliable biomarkers and drug targets for novel diagnostic approaches and anthelmintic drugs are required. In this study, metabolite profiles of T. spiralis adult worms and muscle larvae were obtained using mass spectrometry-based metabolomics. In addition, metabolite-based biomarkers of T. spiralis excretory-secretory products and their related metabolic pathways were characterized. The metabolic profiling identified major, related metabolic pathways involving adenosine monophosphate (AMP)-dependent synthetase/ligase and glycolysis/gluconeogenesis in T. spiralis adult worms and muscle larvae, respectively. These pathways are potential drug targets for the treatment of the intestinal and muscular phases of infection. The metabolome of larva excretory-secretory products was characterized, with amino acid permease and carbohydrate kinase being identified as key metabolic pathways. Among six metabolites, decanoyl-l-carnitine and 2,3-dinor-6-keto prostaglandin F1α-d9 were identified as potential metabolite-based biomarkers that might be related to the host inflammatory processes. In summary, this study compared the relationships between the metabolic profiles of two T. spiralis growth stages. Importantly, the main metabolites and metabolic pathways identified may aid the development of novel clinical diagnostics and therapeutics for human trichinellosis and other related helminthic infections.


Asunto(s)
Trichinella spiralis , Triquinelosis , Animales , Humanos , Triquinelosis/diagnóstico , Antígenos Helmínticos , Proteínas del Helminto/metabolismo , Larva/fisiología , Ensayo de Inmunoadsorción Enzimática , Anticuerpos Antihelmínticos , Músculos , Biomarcadores
10.
Chem Res Toxicol ; 36(12): 1921-1929, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37983188

RESUMEN

Human exposure to DNA alkylating agents is poorly characterized, partly because only a limited range of specific alkyl DNA adducts have been quantified. The human DNA repair protein, O6-methylguanine O6-methyltransferase (MGMT), irreversibly transfers the alkyl group from DNA O6-alkylguanines (O6-alkGs) to an acceptor cysteine, allowing the simultaneous detection of multiple O6-alkG modifications in DNA by mass spectrometric analysis of the MGMT active site peptide (ASP). Recombinant MGMT was incubated with oligodeoxyribonucleotides (ODNs) containing different O6-alkGs, Temozolomide-methylated calf thymus DNA (Me-CT-DNA), or human colorectal DNA of known O6-MethylG (O6-MeG) levels. It was digested with trypsin, and ASPs were detected and quantified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. ASPs containing S-methyl, S-ethyl, S-propyl, S-hydroxyethyl, S-carboxymethyl, S-benzyl, and S-pyridyloxobutyl cysteine groups were detected by incubating MGMT with ODNs containing the corresponding O6-alkGs. The LOQ of ASPs containing S-methylcysteine detected after MGMT incubation with Me-CT-DNA was <0.05 pmol O6-MeG per mg CT-DNA. Incubation of MGMT with human colorectal DNA produced ASPs containing S-methylcysteine at levels that correlated with those of O6-MeG determined previously by HPLC-radioimmunoassay (r2 = 0.74; p = 0.014). O6-CMG, a putative O6-hydroxyethylG adduct, and other potential unidentified MGMT substrates were also detected in human DNA samples. This novel approach to the identification and quantitation of O6-alkGs in human DNA has revealed the existence of a human DNA alkyl adductome that remains to be fully characterized. The methodology establishes a platform for characterizing the human DNA O6-alkG adductome and, given the mutagenic potential of O6-alkGs, can provide mechanistic information about cancer pathogenesis.


Asunto(s)
Neoplasias Colorrectales , O(6)-Metilguanina-ADN Metiltransferasa , Humanos , Dominio Catalítico , Cisteína , ADN/química , Reparación del ADN , Espectrometría de Masas , O(6)-Metilguanina-ADN Metiltransferasa/genética , Oligodesoxirribonucleótidos/química , Péptidos
11.
J Agric Food Chem ; 71(43): 16194-16203, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37779478

RESUMEN

Lactic acid bacteria (LAB) were screened from Lutjanus russellii (red sea bass), and their antimicrobial activities were evaluated against two Aeromonas species isolated from the Nile tilapia, namely, Aeromonas veronii (AV) and Aeromonas jandaei (AJ). Three LAB isolates, Enterococcus faecium MU8 (EF_8), Enterococcus faecalis MU2 (EFL_2), and E. faecalis MU9 (EFL_9), were found to inhibit both AV and AJ; however, their cell-free supernatant (CFS) did not do so. Interestingly, bacteriocin-like substances (BLS) induced by cocultures of EF_8 with AV exhibited the highest antimicrobial activity against both Aeromonas sp. The size of BLS was less than 1.0 kDa; the purified BLS were susceptible to proteinase K digestion, indicating that they are peptides. BLS contained 13 identified peptides derived from E. faecium, as determined by liquid chromatography-tandem mass spectrometry. Cocultures of Gram-positive-producing and -inducing LAB strains have been used to increase bacteriocin yields. To our knowledge, this is the first report describing inducible BLS produced by cocultures of Gram-positive-producing and Gram-negative-inducing strains.


Asunto(s)
Aeromonas , Antiinfecciosos , Bacteriocinas , Enterococcus faecium , Bacteriocinas/química , Aeromonas veronii , Técnicas de Cocultivo , Péptidos , Antibacterianos/farmacología
12.
Appl Microbiol Biotechnol ; 107(24): 7439-7450, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37801098

RESUMEN

For decades, plastic waste management has been one of the major ecological challenges of our society. Despite the introduction of biodegradable alternatives such as polylactic acid (PLA), their beneficial environmental impact is limited by the requirement of specific compost facility as biodegradation of PLA in natural environment occurs at a very slow rate. In this work, a plastic-degrading enzyme was utilized to facilitate degradation process. Genomic and proteomic tools were employed to identify a new biodegradable plastic-degrading enzyme from Cryptococcus nemorosus TBRC2959. The new enzyme, Cr14CLE, functions optimally under mild conditions with temperature range of 30 to 40 °C and suffers no significant loss of enzymatic activity at pH ranging from 6 to 8. In addition to PLA, Cr14CLE is capable to degrade other types of biodegradable plastic such as polybutylene succinate (PBS) and polybutylene adipate terephthalate (PBAT) as well as composite bioplastic. Applications of Cr14CLE have been demonstrated through the preparation of enzyme-coated PLA film and laminated PLA film with enzyme layer. PLA films prepared by both approaches exhibited capability to self-degrade in water. KEY POINTS: • Novel plastic-degrading enzyme (Cr14CLE) was identified and characterized. • Cr14CLE can degrade multiple types of biodegradable plastics under mild conditions. • Applications of Cr14CLE on self-degradable plastic were demonstrated.


Asunto(s)
Plásticos Biodegradables , Proteómica , Poliésteres , Ambiente , Plásticos/metabolismo
14.
Food Waterborne Parasitol ; 33: e00207, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37719690

RESUMEN

Gnathostoma is a parasitic nematode that can infect a wide range of animal species, but human populations have become accidental hosts because of their habit of eating raw or undercooked meat from a wide variety of intermediate hosts. While gnathostomiasis is considered an endemic disease, cases of human gnathostomiasis have been increasing over time, most notably in nonendemic areas. There are several complexities to this parasitic disease, and this review provides an update on human gnathostomiasis, including the life cycle, diagnosis, treatment, and treatment strategies used to combat drug resistance. Even now, a definitive diagnosis of gnathostomiasis is still challenging because it is difficult to isolate larvae for parasitological confirmation. Another reason is the varying clinical symptoms recorded in reported cases. Clinical cases can be confirmed by immunodiagnosis. For Gnathosotoma spinigerum, the detection of IgG against a specific antigenic band with a molecular weight of 24 kDa from G. spinigerum advanced third-stage larvae (aL3), while for other species of Gnathostoma including G. binucleatum, the 33-kDa antigen protein is being used. This review also discusses cases of recurrence of gnathostomiasis and resistance mechanisms to two effective chemotherapeutics (albendazole and ivermectin) used against gnathostomiasis. This is significant, especially when planning strategies to combat anthelmintic resistance. Lastly, while no new chemotherapeutics against gnathostomiasis have been made available, we describe the management of recurrent gnathostomiasis using albendazole and ivermectin combinations or extensions of drug treatment plans.

15.
Viruses ; 15(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37766380

RESUMEN

After publication of the article, the authors received comments from a member of the Viruses editorial board who is an expert in the field of adenovirus concerning figures and references that should be included in the paper [...].

16.
Front Immunol ; 14: 1218965, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600806

RESUMEN

Background: Gnathostomiasis is an important zoonosis in tropical areas that is mainly caused by third-stage Gnathostoma spinigerum larvae (G. spinigerum L3). Objectives: This study aimed to prove whether G. spinigerum L3 produces extracellular vesicles (EVs) and investigate human gene profiles related to the immune response against the larvae. Methods: We created an immune cell model using normal human peripheral blood mononuclear cells (PBMCs) co-cultured with the larvae for 1 and 3 days, respectively. The PBMCs were harvested for transcriptome sequencing analysis. The EV ultrastructure was examined in the larvae and the cultured medium. Results: Extracellular vesicle-like particles were observed under the larval teguments and in the pellets in the medium. RNA-seq analysis revealed that 2,847 and 3,118 genes were significantly expressed on days 1 and 3 after culture, respectively. The downregulated genes on day 1 after culture were involved in pro-inflammatory cytokines, the complement system and apoptosis, whereas those on day 3 were involved in T cell-dependent B cell activation and wound healing. Significantly upregulated genes related to cell proliferation, activation and development, as well as cytotoxicity, were observed on day 1, and genes regulating T cell maturation, granulocyte function, nuclear factor-κB and toll-like receptor pathways were predominantly observed on day 3 after culture. Conclusion: G. spinigerum L3 produces EV-like particles and releases them into the excretory-secretory products. Overall, genotypic findings during our 3-day observation revealed that most significant gene expressions were related to T and B cell signalling, driving T helper 2 cells related to chronic infection, immune evasion of the larvae, and the pathogenesis of gnathostomiasis. Further in-depth studies are necessary to clarify gene functions in the pathogenesis and immune evasion mechanisms of the infective larvae.


Asunto(s)
Gnathostoma , Gnathostomiasis , Humanos , Animales , Gnathostoma/genética , Larva/genética , Leucocitos Mononucleares , Activación de Linfocitos
17.
BMC Complement Med Ther ; 23(1): 282, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553559

RESUMEN

Hypertension is among the risk factors of death globally. Novel antihypertensive peptides are alternative choices of antihypertensive assistance. This study aimed to discover novel antihypertensive peptides from green basil leaves. Two bioactive peptides with high angiotensin-converting enzyme inhibition (Asp-Leu-Ser-Ser-Ala-Pro; peptide 1) and antioxidant (Asp-Ser-Val-Ser-Ala-Ser-Pro; peptide 2) activities were gavaged to male Wistar rats induced with NG-nitro-l-arginine methyl-ester (L-NAME). L-NAME-treated rats (HT) had decreased body weights and levels of nitrite and nitrate, which are metabolites of nitric oxide. The levels of their glucose and liver function indicators increased as compared to normal rats. HT rats receiving antihypertensive drugs (HTD) showed higher low-density lipoprotein and low-density lipoprotein/high-density lipoprotein levels than HT rats. Peptide 1 seems to benefit the rat lipid profiles, liver functions, antioxidant, nitrite, nitrate, and angiotensin II peptide levels but not peptide 2. In conclusion, our findings indicate the antihypertensive potential related to vasodilation of peptides from green basil leaves.


Asunto(s)
Antihipertensivos , Ocimum basilicum , Ratas , Masculino , Animales , Antihipertensivos/farmacología , NG-Nitroarginina Metil Éster/farmacología , Nitritos , Nitratos/farmacología , Antioxidantes/farmacología , Ratas Wistar , Presión Sanguínea , Péptidos/farmacología , Lipoproteínas LDL , Hojas de la Planta
18.
Sci Rep ; 13(1): 12133, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495626

RESUMEN

Therapeutic treatment forms can play significant roles in resolving psoriatic plaques or promoting wound repair in psoriatic skin. Considering the biocompatibility, mechanical strength, flexibility, and adhesive properties of silk fibroin sheets/films, it is useful to combine them with anti-psoriatic agents and healing stimulants, notably silk sericin. Here, we evaluate the curative properties of sericin-coated thin polymeric films (ScF) fabricated from silk fibroin, using an imiquimod-induced psoriasis rat model. The film biocompatibility and psoriatic wound improvement capacity was assessed. A proteomics study was performed to understand the disease resolving mechanisms. Skin-implantation study exhibited the non-irritation property of ScF films, which alleviate eczema histopathology. Immunohistochemical and gene expression revealed the depletion of ß-defensin, caspase-3 and -9, TNF-α, CCL-20, IL-1ß, IL-17, TGF-ß, and Wnt expressions and S100a14 mRNA level. The proteomics study suggested that ScF diminish keratinocyte proliferation via the mTOR pathway by downregulating mTOR protein, corresponding to the modulation of TNF-α, Wnt, and IL-1ß levels, leading to the enhancement of anti-inflammatory environment by IL-17 downregulation. Hematology data demonstrated the safety of using these biomaterials, which provide a potential therapeutic-option for psoriasis treatment due to desirable effects, especially anti-proliferation and anti-inflammation, functioning via the mTOR pathway and control of IL-17 signaling.


Asunto(s)
Fibroínas , Psoriasis , Sericinas , Ratas , Animales , Sericinas/farmacología , Sericinas/metabolismo , Interleucina-17/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Fibroínas/farmacología , Fibroínas/metabolismo , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Piel/metabolismo , Inflamación/patología , Antiinflamatorios/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Polímeros/farmacología , Queratinocitos/metabolismo
19.
Microbiol Spectr ; 11(4): e0132023, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37409935

RESUMEN

The bacterial pathogen Burkholderia pseudomallei causes human melioidosis, which can infect the brain, leading to encephalitis and brain abscesses. Infection of the nervous system is a rare condition but is associated with an increased risk of mortality. Burkholderia intracellular motility A (BimA) was reported to play an important role in the invasion and infection of the central nervous system in a mouse model. Thus, to gain insight of the cellular mechanisms underlying the pathogenesis of neurological melioidosis, we explored the human neuronal proteomics to identify the host factors that are up- and downregulated during Burkholderia infection. When infected the SH-SY5Y cells with B. pseudomallei K96243 wild-type (WT), 194 host proteins showed a fold change of >2 compared with uninfected cells. Moreover, 123 proteins showed a fold change of >2 when infected with a knockout bimA mutant (ΔbimA) mutant compared with WT. The differentially expressed proteins were mainly associated with metabolic pathways and pathways linked to human diseases. Importantly, we observed the downregulation of proteins in the apoptosis and cytotoxicity pathway, and in vitro investigation with the ΔbimA mutant revealed the association of BimA with the induction of these pathways. Additionally, we disclosed that BimA was not required for invasion into the neuron cell line but was necessary for effective intracellular replication and multinucleated giant cell (MNGC) formation. These findings show the extraordinary capacity of B. pseudomallei in subverting and interfering with host cellular systems to establish infection and extend our understanding of B. pseudomallei BimA involvement in the pathogenesis of neurological melioidosis. IMPORTANCE Neurological melioidosis, caused by Burkholderia pseudomallei, can result in severe neurological damage and enhance the mortality rate of melioidosis patients. We investigate the involvement of the virulent factor BimA, which mediates actin-based motility, in the intracellular infection of neuroblastoma SH-SY5Y cells. Using proteomics-based analysis, we provide a list of host factors exploited by B. pseudomallei. The expression level of selected downregulated proteins in neuron cells infected with the ΔbimA mutant was determined by quantitative reverse transcription-PCR and was consistent with our proteomic data. The role of BimA in the apoptosis and cytotoxicity of SH-SY5Y cells infected by B. pseudomallei was uncovered in this study. Additionally, our research demonstrates that BimA is required for successful intracellular survival and cell fusion upon infection of neuron cells. Our findings have significant implications for understanding the pathogenesis of B. pseudomallei infections and developing novel therapeutic strategies to combat this deadly disease.


Asunto(s)
Burkholderia pseudomallei , Burkholderia , Melioidosis , Neuroblastoma , Ratones , Animales , Humanos , Burkholderia/fisiología , Melioidosis/microbiología , Proteómica , Burkholderia pseudomallei/genética , Línea Celular
20.
Viruses ; 15(6)2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37376670

RESUMEN

Metagenomics has demonstrated its capability in outbreak investigations and pathogen surveillance and discovery. With high-throughput and effective bioinformatics, many disease-causing agents, as well as novel viruses of humans and animals, have been identified using metagenomic analysis. In this study, a VIDISCA metagenomics workflow was used to identify potential unknown viruses in 33 fecal samples from asymptomatic long-tailed macaques (Macaca fascicularis) in Ratchaburi Province, Thailand. Putatively novel astroviruses, enteroviruses, and adenoviruses were detected and confirmed by PCR analysis of long-tailed macaque fecal samples collected from areas in four provinces, Ratchaburi, Kanchanaburi, Lopburi, and Prachuap Khiri Khan, where humans and monkeys live in proximity (total n = 187). Astroviruses, enteroviruses, and adenoviruses were present in 3.2%, 7.5%, and 4.8% of macaque fecal samples, respectively. One adenovirus, named AdV-RBR-6-3, was successfully isolated in human cell culture. Whole-genome analysis suggested that it is a new member of the species Human adenovirus G, closely related to Rhesus adenovirus 53, with evidence of genetic recombination and variation in the hexon, fiber, and CR1 genes. Sero-surveillance showed neutralizing antibodies against AdV-RBR-6-3 in 2.9% and 11.2% of monkeys and humans, respectively, suggesting cross-species infection of monkeys and humans. Overall, we reported the use of metagenomics to screen for possible new viruses, as well as the isolation and molecular and serological characterization of the new adenovirus with cross-species transmission potential. The findings emphasize that zoonotic surveillance is important and should be continued, especially in areas where humans and animals interact, to predict and prevent the threat of emerging zoonotic pathogens.


Asunto(s)
Infecciones por Adenoviridae , Adenovirus de los Simios , Infecciones por Enterovirus , Enterovirus , Animales , Humanos , Macaca fascicularis , Adenovirus de los Simios/genética , Tailandia/epidemiología , Macaca mulatta , Adenoviridae , Infecciones por Adenoviridae/veterinaria , Heces , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...